RESEARCH ARTICLE

Wolbachia both aids and hampers the performance of spider mites on different host plants

Flore Zéle*,†, Joaquim L. Santos, Diogo P. Godinho and Sara Magalhães

*Corresponding author: cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Edifício C2, Piso-3, Campo Grande, 1759-016 Lisbon, Portugal. Tel: +351915878725, E-mail: fezele@fc.ul.pt

One sentence summary: This study suggests that endosymbiont prevalence in spider-mite natural populations is explained by plant-specific costs and benefits of infection, and highlights the importance of studying several herbivores’ life-history traits.

Editor: Julie Olson

†Flore Zéle, http://orcid.org/0000-0003-2954-5488

ABSTRACT

In the last few decades, many studies have revealed the potential role of arthropod bacterial endosymbionts in shaping the host range of generalist herbivores and their performance on different host plants, which, in turn, might affect endosymbiont distribution in herbivore populations. We tested this by measuring the prevalence of endosymbionts in natural populations of the generalist spider mite Tetranychus urticae on different host plants. Focusing on Wolbachia, we then analysed how symbionts affected mite life-history traits on the same host plants in the laboratory. Overall, the prevalences of Cardinium and Rickettsia were low, whereas that of Wolbachia was high, with the highest values on bean and eggplant and the lowest on morning glory, tomato and zucchini. Although most mite life-history traits were affected by the plant species only, Wolbachia infection was detrimental for the egg-hatching rate on morning glory and zucchini, and led to a more female-biased sex ratio on morning glory and eggplant. These results suggest that endosymbionts may affect the host range of polyphagous herbivores, both by aiding and hampering their performance, depending on the host plant and on the life-history trait that affects performance the most. Conversely, endosymbiont spread may be facilitated or hindered by the plants on which infected herbivores occur.

Keywords: Arthropod-plant-symbiont interaction; bacterial symbiont; fitness effects; host-plant use; mutualism; parasitism

INTRODUCTION

Although generalist herbivores are able to colonize several host plants, their performance on different host plants is variable. Whereas some studies suggest that the host range of herbivores is mostly determined by geographical location (Calatayud et al. 2016), others suggest that this range is determined by host-plant nutritional quality (Schoonhoven et al. 2005) or host-plant defences (Becerra 1997). Still, the proximate mechanisms allowing populations to colonize particular host plants remain elusive.

Herbivores harbour a rich community of microorganisms, ranging from their gut microbiota and intracellular vertically transmitted endosymbionts to plant bacteria and viruses of which they serve as vectors, and there is growing evidence of the impact of such communities on herbivore performance on plants (Hosokawa et al. 2007; Clark, Karley and Hubbard 2010; Frago, Dicke and Godfray 2012; Hansen and Moran 2014; Oliver and Martinez 2014; Zhu, Poelman and Dicke 2014; Shikano et al. 2017). Obvious candidates to influence plant colonization by herbivorous arthropods are their heritable endosymbionts (Clark, Karley and Hubbard 2010; Feldhaar 2011; Ferrari and Vavr 2011;
Frigo, Dicke and Godfray 2012; Jaenike 2015). Due to their vertical mode of transmission, the fitness of such symbionts is tightly linked to that of their host and they are likely to benefit their host in order to increase their own transmission (Fine 1975). Indeed, endosymbionts have been shown to affect the host-plant range of herbivorous arthropods (Hosokawa et al. 2007; Tsuchida et al. 2011; Sugio et al. 2015; Wagner et al. 2015; Giron et al. 2017) or to increase performance on certain plant species (Wilkinson et al. 2001; Leonardo and Muiru 2003; Ferrari et al. 2004; Tsuchida, Koga and Fukatsu 2004; Ferrari, Scarborough and Godfray 2007; Hosokawa et al. 2007; Su et al. 2013; Su et al. 2015; Wagner et al. 2015), while decreasing performance on others (Chen, Montllor and Purcell 2000; Leonardo and Muiru 2003; Ferrari, Scarborough and Godfray 2007; Chandler, Wilkinson and Douglas 2008; McLean et al. 2011; Wagner et al. 2015). In some cases, increased host performance is due to endosymbionts acting as nutritional mutualists, directly supplying their arthropod hosts with nutrients or enzymes that are missing in their plant diet (reviewed by Chaves, Neto and Tenreiro 2009; Douglas 2009), or displaying compensatory effects during periods of nutritional deficiency (Su et al. 2014). Endosymbionts may also enable arthropods to manipulate phytohormonal profiles (Kaiser et al. 2010; Body et al. 2013), resource allocation (Hackett, Karley and Bennett 2013), and anti-herbivory defences (Barr et al. 2010; Su et al. 2015). Conversely, symbiont-mediated decreased host performance on particular plants might be due to the nutrient profile (e.g. specific amino acids and nitrogen content) of these plants, which promotes deleterious symbiont traits and disturbs the control over bacterial abundance (Wilkinson, Koga and Fukatsu 2007; Chandler, Wilkinson and Douglas 2008). However, as these endosymbionts are vertically transmitted, their effects cannot easily be disentangled from that of the insect species or biotype/host race (e.g. Chen, Montllor and Purcell 2000; Leonardo and Muiru 2003; Simon et al. 2003; Ferrari et al. 2004; Chandler, Wilkinson and Douglas 2008). Artificial curing and/or transinfection should be performed to determine unambiguously the respective roles of symbionts and host genotypes, as well as their interactions (e.g. Leonardo 2004; Tsuchida, Koga and Fukatsu 2004; Ferrari, Scarborough and Godfray 2007; Hosokawa et al. 2007; McLean et al. 2011; Tsuchida et al. 2011; Su et al. 2013; Su et al. 2015; Wagner et al. 2015).

Such variable effects of endosymbionts on herbivore–plant interactions may contribute to variation in the abundance and distribution of herbivorous arthropods (Douglas 2009; Hansen and Moran 2014). Conversely, as symbiont–herbivore interactions may differ according to the host plant, and nutrition of the herbivore host can affect the within-host symbiont density (Wilkinson et al. 2001; Wilkinson, Koga and Fukatsu 2007; Chandler, Wilkinson and Douglas 2008; Zhang et al. 2016a), the host plant can also affect endosymbiont distribution in the field (Leonardo and Muiru 2003; Simon et al. 2003; Ferrari et al. 2004; Tsuchida, Koga and Fukatsu 2004; Chandler, Wilkinson and Douglas 2008; Ahmed et al. 2010; Brady and White 2013; Pan et al. 2013; Guidolin and Consoli 2017). However, most studies addressing these questions have been conducted on sap-feeding insects, and whether symbiont prevalence and their effects on their herbivorous host vary with the host plant remains unstudied in many other systems.

The two-spotted spider mite, Tetramychus urticae, a cosmopolitan agricultural and horticultural pest that feeds on cell content, is a highly polyphagous arthropod, feeding on more than 1100 plant species (Migeon and Dorkeld 2017). This generalist herbivore rapidly adapts to novel host plants (Fry 1990; Agrawal 2000; Magalhães et al. 2007a), sometimes forming host races (Magalhães et al. 2007b), and may harbour several endosymbiotic bacteria with variable prevalence among populations (Enigl and Schausberger 2007; Gotoh, Noda and Ito 1990; Tsuchida, Koga and Fukatsu 2007; Ferra rini, Scardovi et al. 2016a), the former three endosymbionts in the current study. Subsequently, the performance of T. urticae hinges on the plant that is being colonized. Finally, we discuss the importance of possible mechanisms leading to our results as well as the potential adaptive significance of the presence of Wolbachia for plant colonization by T. urticae.

MATERIALS AND METHODS

Effect of the host plant on endosymbiont prevalence in the field

To determine whether the prevalence of Wolbachia, Cardinium and Rickettsia in natural T. urticae populations varied with the host plant, spider mites (red form only) were collected on bean (Phaseolus vulgaris, Fabaceae), eggplant (Solanum melongena, Solanaceae), purple morning glory (Ipomoea purpurea, Convolvulaceae), zucchini (Cucurbita pepo, Cucurbitaceae) and tomato (Solanum lycopersicum, Solanaceae) across 12 different locations in the region of Lisbon (Portugal) in June and July 2015 (Fig. 1, Table 1). These plants were selected because they are part of the natural host range of T. urticae and belong to different families. Sampling sites consisted of open fields, greenhouses or organic vegetable gardens, while being pesticide-free to avoid this potential confounding effect. Infested leaves were detached and placed in closed plastic boxes that were brought to the laboratory. On the same day, 50 adult females were haphazardly picked from each population and their species determined at the individual level based on morphological characteristics under a stereoscope. These females were then placed on 2 cm² leaf discs of the same plant species on which they were found and allowed to lay eggs for four days. Subsequently, 20 of these females were randomly selected and individually tested for the presence of Wolbachia, Cardinium and Rickettsia on entire mites without DNA extraction by multiplex PCR using genus-specific primers as described in Zélé, Weill and Magalhães (2018b). Subsequently, for each population, the DNA of a pool consisting of one daughter from each of these females was
Figure 1. Map showing sampling sites (grey dots) where *T. urticae* spider mites were collected on five different host plants in the region of Lisbon in Portugal. Bean: B1, B2, B6, B7 and B8; eggplant: E3, E4, E5, E6 and E7; purple morning glory: P5 and P13; tomato: T1, T3, T5, T6 and T7; zucchini: Z1, Z2, Z5, Z6 and Z7.

Table 1. *Tetranychus urticae* populations collected on five different host plants across 12 different locations in the region of Lisbon in June–July 2015 and used to study the plant effect on the prevalence of *Wolbachia*, *Cardinium* and *Rickettsia*.

<table>
<thead>
<tr>
<th>Host plant</th>
<th>Name</th>
<th>Date</th>
<th>Location</th>
<th>Coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bean (Phaseolus vulgaris)</td>
<td>B1</td>
<td>08-06-2015</td>
<td>Hortas da Cortesia, São João das Lampas</td>
<td>38.865278, -9.384006</td>
</tr>
<tr>
<td></td>
<td>B2</td>
<td>08-06-2015</td>
<td>Pégo Pinheiro</td>
<td>38.851900, -9.326903</td>
</tr>
<tr>
<td></td>
<td>B6</td>
<td>10-06-2015</td>
<td>Correias</td>
<td>39.342914, -8.797936</td>
</tr>
<tr>
<td></td>
<td>B8</td>
<td>10-06-2015</td>
<td>Aromas do Outeiro, Carregado</td>
<td>39.026500, -8.982278</td>
</tr>
<tr>
<td>Eggplant (Solanum melongena)</td>
<td>E3</td>
<td>10-06-2015</td>
<td>Aromas do Outeiro, Carregado</td>
<td>39.026500, -8.982278</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>10-06-2015</td>
<td>Ribeira de Prágua</td>
<td>39.366414, -8.851036</td>
</tr>
<tr>
<td></td>
<td>E7</td>
<td>16-06-2015</td>
<td>Quinta Pedagógica dos Olivais, Lisbon</td>
<td>38.762897, -9.112419</td>
</tr>
<tr>
<td>Purple morning glory (Ipomea purpurea)</td>
<td>P5</td>
<td>14-06-2015</td>
<td>Alvalade, Lisbon</td>
<td>38.755283, -9.147203</td>
</tr>
<tr>
<td></td>
<td>P13</td>
<td>08-07-2015</td>
<td>Fernão Ferro</td>
<td>38.58006, -9.102147</td>
</tr>
<tr>
<td>Tomato (Solanum lycopersicum)</td>
<td>T1</td>
<td>08-06-2015</td>
<td>Hortas da Cortesia, São João das Lampas</td>
<td>38.865278, -9.384006</td>
</tr>
<tr>
<td></td>
<td>T3</td>
<td>10-06-2015</td>
<td>Aromas do Outeiro, Carregado</td>
<td>39.026500, -8.982278</td>
</tr>
<tr>
<td></td>
<td>T6</td>
<td>16-06-2015</td>
<td>Campo Pequeno, Lisbon</td>
<td>38.744336, -9.144289</td>
</tr>
<tr>
<td></td>
<td>T7</td>
<td>16-06-2015</td>
<td>Quinta Pedagógica dos Olivais, Lisbon</td>
<td>38.762897, -9.112419</td>
</tr>
<tr>
<td>Zucchini (Cucurbita pepo)</td>
<td>Z1</td>
<td>08-06-2015</td>
<td>Hortas da Cortesia, São João das Lampas</td>
<td>38.865278, -9.384006</td>
</tr>
<tr>
<td></td>
<td>Z2</td>
<td>09-06-2015</td>
<td>Quinta do Poiai, Galeotas</td>
<td>38.536103, -8.000375</td>
</tr>
<tr>
<td></td>
<td>Z5</td>
<td>10-06-2015</td>
<td>Correias</td>
<td>39.342914, -8.797936</td>
</tr>
<tr>
<td></td>
<td>Z6</td>
<td>10-06-2015</td>
<td>Ribeira de Prágua</td>
<td>39.366414, -8.851036</td>
</tr>
<tr>
<td></td>
<td>Z7</td>
<td>10-06-2015</td>
<td>Aromas do Outeiro, Carregado</td>
<td>39.026500, -8.982278</td>
</tr>
</tbody>
</table>
extracted, then a PCR-based method to identify the mite species was performed by multiplex PCR as described in Zéle, Weill and Magalhães (2018b). If a pool could not be assigned unambiguously to T. urticae (Table S1), all data concerning endosymbiont prevalence were discarded. This process was repeated until obtaining endosymbiont prevalence data for five populations per plant, except for morning glory, for which we could obtain only two populations of T. urticae due to the weak infestation rate of this plant by this spider-mite species, despite a large sampling effort (Table S1).

Effect of Wolbachia, the host plant, and their interaction on the performance of spider mites

Spider-mite populations, tetracycline treatment and population rearing

The spider-mite population used belong to the red form of T. urticae and was originally collected on Datura plants at Aldeia da Mata Pequena, Portugal, in November 2013 and kept in a mass-rearing environment (~5000 individuals) on bean plants (var. Enana), under controlled conditions (25 ± 2 °C, 16/8 h L/D) since then. This population, hereafter called Wi, was found uninfected by Rickettsia, Spiroplasma or Arsenophonus but fully infected by Wolbachia in the field (Zéle et al. 2018a). Although this population was also slightly infected by Cardinium (Zéle et al. 2018a), this endosymbiont has been rapidly lost following laboratory rearing (unpublished data). To obtain a Wolbachia-uninfected (Wu) population with a similar genetic background, roughly three months after collection 30 adult females of the Wi population were placed in Petri dishes containing bean-leaf fragments placed on cotton with a tetracycline solution (0.1%, w/v). This treatment was applied continuously for three successive generations (Breeuwer 1997), then the population was maintained in a mass-rearing environment without antibiotics for c.a. 12 generations before the experiment to avoid (or limit) potential side-effects of the antibiotic treatment (e.g. O’Shea and Singh 2015) and allow mites to recover potential loss of gut microbiota. Before use, up to 20 individual females and pools of 100 females were checked by PCR to confirm the absence and presence of Wolbachia infection in Wu and Wi populations, respectively.

Performance of Wolbachia-infected and uninfected females on different host plants

To determine the effect of Wolbachia infection and of the host plant, as well as their possible interaction, on the performance of T. urticae, we measured life-history traits of individuals from Wi or Wu populations when placed on the same plant species as those from which mites were collected in the field study (bean: var. Enana, eggplant: var. Larga Morada, morning glory: var. Vigorous, zucchini: var. BellezzaNegra, and tomato: var. Moneymaker). To control for age, 100 females were allowed to lay eggs for three days on detached bean leaves placed on water-soaked cotton, and the adult females resulting from those eggs were used in the experiments. Fifty mated females (10–13 days old) were haphazardly picked from either Wi or Wu cohorts and placed individually on a 2 cm² leaf disc from one of the five different host plants. The replicates were distributed along five consecutive days (10 replicates per treatment per day). Females that were alive after three days were transferred to new leaf discs where they could lay eggs for another three days. Their survival (S) and the proportion of drowned females (PD) in the water-soaked cotton (i.e. accidental death of females trying to escape the leaf discs) were followed daily during six days. The fecundity of each female was measured at days 3 and 6 and the average female daily fecundity was estimated taking into account their daily mortality (DF = total number of eggs laid per female / number of days the female was alive). The number of unhatched eggs was counted five days later (i.e. days 8 and 11, respectively) to estimate the egg-hatching rate (HR = hatched eggs / total number of eggs). Adult offspring (F1 females + F1 males) were counted after six additional days (i.e. days 14 and 17, respectively) and used to estimate juvenile mortality (JM = [total number of eggs - number of unhatched eggs - number of F1 adults] / total number of eggs), F1 sex ratio (SR = number of F1 males / number of F1 females) and the number of viable offspring (VO = total number of adult offspring per female per treatment observed at the end of the experiment on each plant). The entire experiment was repeated three months later (hereafter called blocks 1 and 2) except for replicates involving tomato plants. Indeed, given a very high PD (88 ± 3.3%; data not shown) and because the surviving females laid on average less than one egg per day (0.32 ± 0.05; data not shown) on this plant, subsequent traits could not be measured and we decided to exclude it from this experiment. The entire experiment was conducted in a growth chamber under standard conditions (25 ± 2 °C, 60% RH, 16/8 h L/D).

Statistical analyses

Analyses were carried out using the R statistical package (v. 3.3.2). The different statistical models built to analyse the effect of host plant on endosymbiont prevalence in field-collected spider-mite populations and the effects of Wolbachia on different host plants are described in the electronic supplementary material (Additional file 1), Table S2.

To analyse the effect of host plants on endosymbiont prevalence in field-collected mites, the prevalence of Wolbachia (model 1), Cardinium (model 2) and Rickettsia (model 3) were fit as binary response variables, the host plant on which mites were collected as fixed explanatory variable, and the location as random explanatory variable. Because of quasi-complete separation of some of our data, which usually causes problems with estimated regression coefficients, analyses were conducted using a mixed model bglm procedure (bglm package) with a binomial error distribution (Pasch, Bolker and Phelps 2013). When the variable “plant” was significant, a stepwise a posteriori procedure (Crawley 2007) to determine differences between plants was carried out by aggregating factor levels together and by testing the fit
of the simplified model using a likelihood ratio test (LRT), which is approximately distributed as a χ^2 distribution (Bolker 2008). Because none of the mites collected in this study were singly infected by Cardinium or Rickettsia, and the prevalence of each type of coinfection was very low (cf. Results), we did not have enough statistical power to study the effect of the host plants on the prevalence of coinfections.

To analyze the effect of Wolbachia, the host plant, and their interaction on the performance of spider mites, the infection status of females (i.e. Wi: infected or Wu: uninfected) and the host plants tested were fit as fixed explanatory variables, whereas block and day were fit as random explanatory variables (day nested within block). Survival data (S; model 4) were analyzed using a Cox proportional hazards mixed-effect model (coxme, kinship package). Hazard ratios were obtained from this model as an estimate of the difference in mortality rate (Crawley 2007) between our control (Wi population on bean) and each of the other factor levels. PD, a binary response variable (drowned or not; model 5), was analyzed using a generalized linear mixed model with a binomial distribution (glmer, lme4 package). DF, a continuous response variable (model 6) was analyzed using linear mixed-effect models (lmer, nlme package). The other proportion variables, HR, SR and JM (models 7, 8 and 9, respectively), were computed using the function cbind (e.g. number of hatched eggs, males or dead juveniles vs. number of unhatched eggs, females or alive juveniles, respectively). However, due to the low DF of spider mites, these variables, as well as VO (model 10), were greatly overdispersed. One way of handling this overdispersion is by using quasi-binomial or negative binomial pseudo distributions (Crawley 2007), but, to our knowledge, this is not possible within the usual mixed model glmer procedure. Thus, we used instead a mixed model glmmadmb procedure (glmmADMB package) with zero-inflated binomial error distribution for HR, SR and JM, and zero-inflated negative binomial error distribution for VO. When a statistically significant interaction between the variables ‘Wolbachia’ (Wi or Wu) and ‘plant’ was found, the effect of Wolbachia was analyzed for each plant separately. When only the variable ‘plant’ was significant, a posteriori contrasts between host plants were performed as before.

For all analyses, maximal models were simplified by sequentially eliminating non-significant terms to establish a minimal model (Crawley 2007), and the significance of the explanatory variables was established using χ^2-tests or F-tests to account for overdispersion (Bolker 2008). The significant values given in the text are for the minimal model, while non-significant values correspond to those obtained before deletion of the variable from the model (Crawley 2007). Full datasets are given in Additional files 2 and 3.

RESULTS

Effect of the host plant on endosymbiont prevalence in the field

The prevalence of Wolbachia was overall high (92.7 ± 1.2%), while that of Cardinium (2.5 ± 0.7%) and Rickettsia (2.0 ± 0.7%) were low (Fig. 2). In addition, while 89.3 ± 1.5% of the mites collected in this study were infected by Wolbachia only, none were infected by Cardinium or by Rickettsia only; 1.4 ± 0.6% were coinfected by Wolbachia and Cardinium, 0.9 ± 0.5% were coinfected by Wolbachia and Rickettsia, and 1.14 ± 0.5% were infected by these three endosymbionts (see Fig. S1 for infection statuses at the individual level). The prevalence of Wolbachia and of Rickettsia were significantly affected by the plant on which T. urticae females were collected ($\chi^2 = 14.79, P = 0.005$; model 1, and $\chi^2 = 12.71, P = 0.01$; model 3, respectively; Fig. 2). Contrast analyses revealed that the prevalence of Wolbachia was higher on bean and eggplant (97.0 ± 1.7%; contrast bean vs. eggplant; $\chi^2 = 1.51, P = 0.47$) than on the three other plants (89.2 ± 2.0%; contrast morning glory vs. tomato vs. zucchini; $\chi^2 = 0.39, P = 0.82$; contrast between the two groups of plants: $\chi^2 = 14.34, P = 0.0002$), and that of Rickettsia differed only on morning glory (12.5 ± 5.3%) compared with all other plants (1.0 ± 0.5%; contrast bean vs. eggplant vs. tomato vs. zucchini: $\chi^2 = 2.95, P = 0.40$; contrast between this group of plants and morning glory: $\chi^2 = 9.76, P = 0.002$). Finally, the prevalence of Cardinium, similarly to that of Rickettsia, tended to be higher on morning glory (12.5 ± 5.3%) compared with the other plants (1.5 ± 0.6%), but this effect was not statistically significant ($\chi^2 = 1.61, P = 0.81$; model 2).

Effect of Wolbachia, the host plant, and their interaction on the performance of spider mites

Overall, there was no significant effect of Wolbachia infection ($\chi^2 = 0.73, P = 0.39$), of host plants ($\chi^2 = 6.84, P = 0.07$), or of their interaction ($\chi^2 = 3.34, P = 0.34$; model 4; Table 1 and Fig. S2) on survival (S) over the first six days of the experiment. However, host plants affected significantly the proportion of drowned mites (PD; $\chi^2 = 23.14, P < 0.0001$), regardless of Wolbachia infection (Wolbachia effect: $\chi^2 = 1.35, P = 0.25$; Wolbachia–plant interaction: $\chi^2 = 0.70, P = 0.87$; model 5; Table 2).

Daily fecundity (DF) was significantly affected by host plants ($\chi^2 = 129.33, P < 0.0001$), but not by Wolbachia ($\chi^2 = 2.06, P = 0.15$) or its interaction with the plant ($\chi^2 = 1.21, P = 0.75$; model 6; Table 2). Contrast analyses revealed that DF was similar on morning glory and zucchini (3.37 ± 0.11 eggs per day; contrast morning glory vs. zucchini: $\chi^2 = 1.03, P = 0.31$), but higher on bean (4.60 ± 0.19 eggs per day; contrast morning glory–zucchini vs. bean: $\chi^2 = 40.14, P < 0.0001$), and lower on eggplant (2.10 ± 0.13; Contrast eggplant vs. morning glory–zucchini: $\chi^2 = 42.77, P < 0.0001$).

The effect of Wolbachia on egg-hatching rate (HR) depended on the host plant tested (Wolbachia–plant interaction: $F_{3,697} = 5.47, P = 0.001$; model 7; Table 1 and Fig. 3). Indeed, Wolbachia reduced HR on morning glory ($F_{1,172} = 10.05, P = 0.002$).
Table 2. Effect of host plants and of Wolbachia on the performance of spider mites. Mean (± s.e.) values of both Wolbachia-infected (Wi) and uninfected (Wu) T. urticae on the different plants are represented for each one of the performance traits measured in this study. For HR, JM and SR, estimates were obtained from the GLMM statistical model and include a sex variation among females, as well as the correction for zero-inflation. Sex ratio (SR) did not differ significantly between Wi and Wu plants. Nonetheless, host plant significantly explained this trait (F1, 168 = 8.54, P = 0.004). On bean and zucchini, however, SR did not differ significantly from each other (contrast bean vs. zucchini: χ² = 0.72, P = 0.40) and led to intermediate JM of 16.8 ± 0.9%, while morning glory decreased it by 5.2 ± 1.5% (contrast morning glory vs. bean–zucchini: χ² = 53.82, P < 0.0001), and eggplant increased it by 11.3 ± 2.1% (contrast bean–zucchini vs. eggplant: χ² = 109.36, P < 0.0001).

Wolbachia infection affected differently the sex ratio (SR) produced on the different plants (Wolbachia–plant interaction: F8,681 = 2.48, P = 0.04; model 9; Table 2 and Fig. 4). Indeed, Wolbachia decreased the proportion of males on morning glory (F1, 168 = 5.51, P = 0.02) and on eggplant (F1, 153 = 8.54, P = 0.004). On bean and zucchini, however, SR did not differ significantly between Wi and Wu plants (F1, 179 = 5.51, P = 0.05 and F1, 172 = 2.28, P = 0.13, respectively).

Although we found a significant Wolbachia–plant interaction on HR and SR, Wolbachia did not significantly influence the average number of viable offspring (VO; F1, 789 = 0.78, P = 0.38), and this effect was independent of the host plant (Wolbachia–plant interaction: F3,786 = 0.70, P = 0.55; model 10; Table 2 and Fig. 5). Nonetheless, host plant significantly explained this trait (F3,790 = 48.72, P < 0.0001; model 10), with the highest values on bean, intermediate values on morning glory (contrast morning glory vs. bean: χ² = 4.82, P = 0.03) and zucchini (contrast zucchini vs. morning glory: χ² = 5.12, P = 0.02), and the lowest values on eggplant (contrast eggplant vs. zucchini: χ² = 44, P < 0.0001).

DISCUSSION

The prevalence of Wolbachia and Rickettsia in T. urticae females found in this study was relatively similar to that of an earlier
study in the same geographical area (Zélé et al. 2018a). However, the prevalence of Cardinium was about five times lower in the current study than in the former one (2.5 ± 0.7% vs. 13.6 ± 2.9%, respectively). As the populations were sampled on comparable host plants in this previous study (except for one population collected on Datura stramonium, the others were collected on bean, eggplant, tomato and zucchini), the discrepancy observed for the overall Cardinium prevalence between the two studies may be attributed to the time of collection. Indeed, mites were collected between September and December in the previous study and in June–July in the current one. Several studies have shown that the sampling period might affect endosymbiont prevalence and/or density in host populations (Toju and Fukatsu 2011; Dorfmeier et al. 2015; Martinez-Diaz, Latorre and Gil 2016; Sumi, Miura and Miyatake 2017), and the increase of Cardinium prevalence during summer might be compatible with the hypothesis of an accumulation of this symbiont throughout the season via horizontal transfers (Zélé et al. 2018a). In addition, the temperature strongly differed between the two sampling periods in the region of Lisbon, with, on average, 21.6 ± 0.3 °C in June–July 2015, and 16.0 ± 0.5 °C in September to December 2013 (data obtained from https://www.tempo.pt/lisboa-sactual.htm). Temperature variations may affect endosymbiont within-host densities, fitness components and maternal transmission depending on the symbiont species or strain, and many heritable bacteria have been shown to affect their host thermal tolerance, both to elevated temperature and to frost (reviewed by Corbin et al. 2017). As a result, several studies have shown geographical variation in symbiont (including Cardinium) prevalence that may be attributable to temperature differences (e.g. Tsuchida et al. 2002; Toju and Fukatsu 2011; Morag et al. 2012; Kriesner et al. 2016).

We found that Wolbachia prevalence was overall high, but significantly higher on bean and eggplant than on the other plants. Whereas some earlier studies have shown that Wolbachia prevalence in herbivores varies according to the host plant (Ahmed et al. 2010; Toju and Fukatsu 2011; Guidolin and Consoli 2017), including a recent study conducted in the spider mite, Tetranychus truncatus (Zhu et al. 2018), others show no difference (Ji et al. 2015). Unfortunately, the scarcity of studies, along with the fact that they were mostly done in other systems, hampers a meaningful comparison among studies. In addition, it is extremely difficult to sample spider-mite populations on all the plants tested within the same locality (Table S1). Consequently, this implies an important sampling effort to obtain only a very reduced number of populations that fit the criteria for such studies. For instance, despite a large sampling effort across 21 localities and 12 host plant species, Zhu et al. (2018) could only assess the effect of three common host plants (soybean, corn and tomato) from three different locations. Still, they did find a significant effect of the host plant on the prevalence of Wolbachia, which was about 30% higher on tomato than on corn. In our study, the amplitude of the observed effects is much lower, possibly due to a threshold effect, since the prevalence of Wolbachia that we observed in T. urticae is overall much higher than that observed in T. truncatus by Zhu et al. (2018). Clearly, differences in Wolbachia prevalence were not associated with plant phylogenetic distance, as it differed between the solanaceous plants used (eggplant and tomato). Moreover, the effect of an endosymbiont on arthropod–plant interactions may depend on both the genotype (or species) of symbiont (Leonardo and Muiru 2003) and arthropod host (Chen, Montilior and Purcell 2000; Ferrari, Scarborough and Godfray 2007; McLean et al. 2011; Wagner et al. 2015), and/or their interaction (Ferrari, Scarborough and Godfray 2007). More studies on plant-dependent symbiont prevalence may thus shed light on the potential factors underlying the pattern observed and on the ecological meaning of such effects.

Here, we hypothesise that the variation in endosymbiont prevalence according to the host plant is, at least partially, due to plant-specific effects of these symbionts on spider-mite performance. Although we did find some variation of Rickettsia and Cardinium prevalences according to the host plant, they were very low, so we opted for addressing this issue using Wolbachia only. Overall, we found a strong effect of the host plant on spider-mite performance, with the highest values observed on bean. This is not surprising, given that bean was the rearing environment of the population used, and is generally a host plant of high quality for spider mites (e.g. Magalhães et al. 2011). Conversely, the lowest performances were found on Solanaceous plants (eggplant and tomato), being so low on tomato that we excluded these data from further analyses (cf. Material and Methods). In the other four plants, we found that some traits (S, PD, DF and JM) were not affected by Wolbachia whereas others (HR and SR) were affected in a plant-specific manner.

The plant-specific effects of Wolbachia, although of low amplitude, could be explained by several non-exclusive mechanisms. First, Wolbachia may impose a nutritional burden on its hosts, sequestering and using vital host nutrients for its own survival (Chandler, Wilkinson and Douglas 2008; Caragata et al. 2014; Ponton et al. 2015), and this may vary with the host plant. Indeed, the nutrient composition of plant material is often poor or unbalanced for herbivores (Schoonhoven et al. 2005; Karban and Baldwin 2007), and nutrient-deficient diet may increase the competition for resources between hosts and symbionts. In turn, this may lead to a decreased ability of infected spider mites to allocate enough nutrients to ensure egg viability on plants of low quality. Increased host–symbiont competition on such low-quality plants could also lead to a biased sex ratio towards males because females are produced from bigger eggs than males in T. urticae (Macke et al. 2011). In addition, the slight Wolbachia-induced female-biased SR observed on morning glory could be a consequence of the lower HR observed on this plant, as larger eggs are generally more likely to hatch (Macke et al. 2011). However, if this hypothesis would hold true, one would expect a

![Figure 5. Effects of different host plants and of Wolbachia on the average VO per female. Bars represent the mean (± s.e.) numbers of offspring (grey: sons; white: daughters) produced by Wolbachia-infected (Wi; grey bars) and uninfected (Wu; white bars) females on different host plants.](https://academic.oup.com/femsec/article-abstract/94/12/fiy187/5097780)
stronger cost of Wolbachia in spider mites on plants of lower quality for mites, which was not the case.

Second, Wolbachia may directly influence the metabolism of some plants, which in turn can affect the biology of its herbivorous hosts. For instance, Wolbachia possess a key gene involved in cytokinin biosynthesis in their genomes (Kaiser et al. 2010) and might be responsible for an increased level of cytokinins in infested plants (Kaiser et al. 2010; Body et al. 2013). As Wolbachia are present in high density in the gnathosoma of spider mites (Zha et al. 2013), and cytokinins can be responsible for a sex ratio shift towards females in insects (Adam et al. 2017), further research could assess whether sex ratio shifts observed on morning glory and eggplant can be mediated by increased cytokinin levels induced by Wolbachia.

Third, Wolbachia may interfere with the mites’ response towards plant defences. Indeed, endosymbionts found in herbivores, including Wolbachia, may directly manipulate the plant defences to benefit their host (Frago, Dicke and Godfray 2012; Hansen and Moran 2014; Zhu, Poelman and Dicke 2014; Sugio et al. 2015; Giron et al. 2017; Shikano et al. 2017). For instance, downregulation of several defence genes of maize by the western corn rootworm Diabrotica virgifera has been shown to be mediated by Wolbachia (Barr et al. 2010, but see Robert et al. 2013). Conversely, endosymbionts may have a detrimental effect on their host by increasing the level of induced plant defences (see Staudacher et al. 2017; although no causal link could be established between the changes in plant defences and mite performance in this study). Thus, whether the presence of Wolbachia in T. urticae can upregulate the defences of zucchini and morning glory, and whether this could explain the reduced egg hatchability observed here, remains to be tested.

From the Wolbachia perspective, a reduced egg hatchability is costly, as it will reduce its later transmission. Also, Wolbachia being maternally transmitted, it should always benefit from a more female-biased sex ratio (note that cytoplasmic incompatibility does not explain our results as this phenotype involves more female-biased sex ratio (note that cytoplasmic incompatibility being maternally transmitted, it should always benefit from a more female-biased sex ratio). Conversely, endosymbionts may have a detrimental effect on mite performance, and that they do not affect VO, these effects may affect Wolbachia prevalence on different host plants. Here, Wolbachia decreases egg hatchability on zucchini, and occurs at low prevalence on different host plants. Indeed, endosymbionts found in herbivores, including Wolbachia, may directly manipulate the plant defences to benefit their host (Frago, Dicke and Godfray 2012; Hansen and Moran 2014; Zhu, Poelman and Dicke 2014; Sugio et al. 2015; Giron et al. 2017; Shikano et al. 2017). For instance, downregulation of several defence genes of maize by the western corn rootworm Diabrotica virgifera has been shown to be mediated by Wolbachia (Barr et al. 2010, but see Robert et al. 2013). Conversely, endosymbionts may have a detrimental effect on their host by increasing the level of induced plant defences (see Staudacher et al. 2017; although no causal link could be established between the changes in plant defences and mite performance in this study). Thus, whether the presence of Wolbachia in T. urticae can upregulate the defences of zucchini and morning glory, and whether this could explain the reduced egg hatchability observed here, remains to be tested.

From the Wolbachia perspective, a reduced egg hatchability is costly, as it will reduce its later transmission. Also, Wolbachia being maternally transmitted, it should always benefit from a more female-biased sex ratio (note that cytoplasmic incompatibility does not explain our results as this phenotype involves crosses between infected males and uninfected females; Gotoh et al. 2007b; Xie, Chen and Hong 2011; Suh et al. 2015). Despite the weak plant-specific effects of Wolbachia on mite performance, and that they do not affect VO, these effects may affect Wolbachia prevalence on different host plants. Here, Wolbachia decreases egg hatchability on zucchini, and occurs at low prevalence on this plant. Conversely, Wolbachia increases the proportion of females produced on eggplant, where it occurs at high prevalence. On morning glory, Wolbachia increases the proportion of daughters, decreases egg hatchability and occurs at intermediate prevalence. Finally, Wolbachia is not costly on bean, the plant where it occurs at very high prevalence. Hence, the observed balance of costs/benefits of Wolbachia on different host plants seems to be correlated to its prevalence.

In conclusion, our results show plant-dependent effects of Wolbachia on spider mites’ egg hatchability and offspring sex ratio, two crucial traits for both spider-mite population dynamics and Wolbachia spread among host populations. Although the amplitude of these effects is relatively low, they may, at least partially, explain the prevalence of this symbiont in spider-mite populations collected on these different host plants. Moreover, our study highlights the importance of studying different host plants and life-history traits when addressing the effects of endosymbionts on the performance of their herbivorous arthropods. These results also raise important questions, such as: (i) whether the pattern observed in this study varies between host and/or symbiont genotype, (ii) whether host plants affect the maintenance and/or spread of endosymbionts within and among populations, and (iii) whether endosymbionts affect the host range of herbivores.

SUPPLEMENTARY DATA
Supplementary data are available at FEMSEC online.

ACKNOWLEDGMENTS
We thank Murat Bakrdöven, Jacques Denoyelle, Leonor Rodrigues, and Inês Santos for their help in spider-mite collection. We also thank IS for the maintenance of the plants and mite populations, JD for designing the map, and Nelson Martins, Jordi Moya Laraño and Susana Veralà for advice in statistical analysis.

Authors’ contributions: Experimental conception and design: FZ, SM; field collections: JS, DG; acquisition of laboratory data: JS; statistical analyses: FZ, JS; paper writing: FZ, SM, with input from all authors. All authors have read and approved the final version of the manuscript.

FUNDING
This work was funded by an FCT-ANR project (FCT-ANR//BIA-EVF/0013/2012) to SM and Isabelle Olivieri and by a FCT-Tubitak project (FCT-TUBITAK/0001/2014) to SM and Ibrahim Cakmak. FZ and DG were funded through FCT Post-Doc (SRFH/BPD/125 020/2016) and PhD (PD/BD/114 010/2015) fellowships, respectively. Funding agencies did not participate in the design or analysis of experiments.

Conflicts of interest. None declared.

REFERENCES
Brady CM, White JA. Cowpea aphid (Aphis craccivora) associated with different host plants has different facultative endosymbionts. Ecol Entomol 2013;38:433–7.

Eldhaa H. Bacterial symbionts as mediators of ecologically important traits of insect hosts. Ecol Entomol 2011;36:533–43.

Zhang YK, Chen YT, Yang K et al. Screening of spider mites (Acari: Tetranychidae) for reproductive endosymbionts reveals links between co-infection and evolutionary history. Sci Rep 2016b;6:27900.

